SigFigCalculator
Volver a Guías

Redondeo de Cifras Significativas: Guía Completa

El redondeo de cifras significativas confunde a muchos estudiantes, pero no tiene por qué. Ya sea que necesites redondear a 3 cifras significativas para un laboratorio de química o a 2 cifras para física, esta guía te lo explica paso a paso.

¿Necesitas redondear cifras significativas ahora?

Nuestra calculadora de redondeo lo hace al instante

La Regla de Oro para Redondear Cifras Significativas

Si el siguiente dígito es 5 o más, redondea hacia arriba. Si es 4 o menos, redondea hacia abajo.

Esa es la base del redondeo. Pero saber qué dígito mirar es donde los estudiantes se confunden. Déjame mostrarte exactamente cómo encontrarlo.

How to round to significant figures in 3 steps

El Proceso de 3 Pasos para Redondear

Sigue este método y lo harás bien siempre
1

Encuentra la Primera Cifra Significativa

Empieza desde la izquierda y encuentra el primer dígito distinto de cero. Esta es tu primera cifra. Recuerda: los ceros a la izquierda nunca cuentan.

0.004728 → first sig fig is 4
3847.5 → first sig fig is 3
2

Cuenta Hasta Tu Número Objetivo

Desde la primera cifra, cuenta hacia la derecha hasta alcanzar el número de cifras que necesitas. El dígito después de tu última cifra determina si redondeas arriba o abajo.

Round 0.004728 to 2 sig figs:

0.004728

3

Aplica la Regla de Redondeo

Si el siguiente dígito es 0-4, mantén la última cifra igual (redondea abajo). Si es 5-9, suma 1 a la última cifra (redondea arriba). ¡No olvides los ceros de posición!

0.004728 → 0.0047

✓ 2 significant figures, rounded down

Rounding rule - 5 or more round up, 4 or less round down

Errores Comunes al Redondear Cifras Significativas

Evita estos errores que cuestan puntos a los estudiantes
Common mistakes when rounding significant figures

Error #1: Redondear Demasiado Pronto

En cálculos de varios pasos, mantén todos los dígitos hasta el final. Redondear resultados intermedios causa "acumulación de errores de redondeo".

Error #2: Eliminar Ceros de Posición

Cuando redondeas 1250 a 2 cifras, la respuesta es 1300, no 13. Esos ceros mantienen la magnitud del número.

Error #3: Contar Ceros a la Izquierda

Los ceros a la izquierda (como en 0.0045) nunca son significativos. Empieza a contar desde el primer dígito distinto de cero.

Error #4: Usar Reglas Incorrectas

Suma/resta usa decimales. Multiplicación/división usa conteo de cifras. Mezclar esto es uno de los errores más comunes.

Error #5: Doble Redondeo

Nunca redondees en etapas. Para redondear 2.449 a 1 decimal, mira el 4 (no el 9). La respuesta es 2.4, no 2.5.

Error #6: Ignorar Ceros Finales Después del Decimal

¡2.50 y 2.5 son diferentes! El primero tiene 3 cifras, el segundo tiene 2.

Referencia Rápida: Ejemplos de Redondeo

Escenarios comunes de redondeo de un vistazo
Original1 Sig Fig2 Sig Figs3 Sig Figs
3.1415933.13.14
0.0078560.0080.00790.00786
12,34510,00012,00012,300
98.7651009998.8

Casos Especiales en el Redondeo

Situaciones que requieren atención especial

El Debate del "Redondeo del 5"

¿Qué pasa cuando el dígito es exactamente 5? La mayoría de las escuelas enseñan "redondear arriba" (así 2.5 → 3). Pero en contextos científicos, podrías encontrar "redondeo bancario".

Para la mayoría de los cursos, usa la regla estándar: 5 o más redondea arriba.

Números Grandes y Notación Científica

Al redondear números grandes, los ceros de posición pueden ser ambiguos. ¿1200 tiene dos o cuatro cifras? La notación científica elimina toda duda:

  • 1.2 × 10³ = 2 sig figs
  • 1.20 × 10³ = 3 sig figs
  • 1.200 × 10³ = 4 sig figs

Los Números Exactos No Limitan las Cifras

Los números de conteo (como "12 huevos") y constantes definidas (como 100 cm = 1 m) son exactos. Tienen infinitas cifras y no limitan tu respuesta.

¿Listo para Redondear?

Usa nuestra calculadora para redondear cualquier número al instante